Hopf-Galois Structures and Binary Quadratic Forms

Robert G. Underwood Department of Mathematics and Computer Science Auburn University at Montgomery Montgomery, Alabama

AUBURN

March 23, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This is joint work with:

Alan Koch Agnes Scott College, Decatur, GA

> Timothy Kohl Boston University, MA

Paul J. Truman Keele University, Staffordshire, UK

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1. Introduction

Let L/\mathbb{Q} be a Galois extension with group

$$D_3 = \langle \sigma, \tau : \sigma^3 = \tau^2 = \tau \sigma \tau \sigma = 1 \rangle,$$

the dihedral group of order 6. Then L/\mathbb{Q} admits a canonical non-classical Hopf-Galois structure with Hopf algebra H_{λ} .

By a theorem of C. Greither, $H_{\lambda} \cong \mathbb{Q}[D_3]$ as \mathbb{Q} -algebras.

In this talk we show that up to scalar multiplication, nilpotent elements in H_{λ} correspond to rational points on a certain conic over \mathbb{Q} . Using this we give a new proof of Greither's theorem.

2. Hopf-Galois Theory

We review some of the basic notions of Hopf-Galois theory.

Let L be a finite extension of a field K.

Let *H* be a finite dimensional, cocommutative *K*-Hopf algebra with comultiplication $\Delta : H \to H \otimes_R H$, counit $\varepsilon : H \to K$, and coinverse $S : H \to H$.

Suppose there is a K-linear action of H on L that satisfies

$$h \cdot (xy) = \sum_{(h)} (h_{(1)} \cdot x)(h_{(2)} \cdot y)$$
$$h \cdot 1 = \varepsilon(h)1$$

for all $h \in H$, $x, y \in L$, where $\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$ is Sweedler notation.

Suppose also, that the K-linear map

$$j: L \otimes_{\mathcal{K}} H \to \operatorname{End}_{\mathcal{K}}(L), \ j(x \otimes h)(y) = x(h \cdot y)$$

is an isomorphism of vector spaces over K. Then H together with this action provides a *Hopf-Galois structure* on L/K.

Example 2.1. Suppose L/K is Galois with group G. Let H = K[G] be the group algebra, which is a Hopf algebra via $\Delta(g) = g \otimes g$, $\varepsilon(g) = 1$, $S(g) = g^{-1}$, for all $g \in G$. The action of K[G] on L given as

$$\left(\sum_{g\in G} r_g g\right) \cdot x = \sum_{g\in G} r_g(g(x))$$

provides the "usual" Hopf-Galois structure on L/K which we call the *classical* Hopf-Galois structure.

In the case that L/K is separable, C. Greither and B. Pareigis have given a complete classification of Hopf-Galois structures.

Let L/K be separable with normal closure E. Let $G = \operatorname{Gal}(E/K)$, $G' = \operatorname{Gal}(E/L)$, and X = G/G'. Denote by $\operatorname{Perm}(X)$ the group of permutations of X. A subgroup $N \leq \operatorname{Perm}(X)$ is *regular* if |N| = |X| and $\eta[xG'] \neq xG'$ for all $\eta \neq 1_N, xG' \in X$.

Let $\lambda : G \to \operatorname{Perm}(X)$, $\lambda(g)(xG') = gxG'$, denote the left translation map. A subgroup $N \leq \operatorname{Perm}(X)$ is *normalized* by $\lambda(G) \leq \operatorname{Perm}(X)$ if $\lambda(G)$ is contained in the normalizer of N in $\operatorname{Perm}(X)$.

Theorem 2.2 (Greither-Pareigis). Let L/K be a finite separable extension. There is a one-to-one correspondence between Hopf Galois structures on L/K and regular subgroups of Perm(X) that are normalized by $\lambda(G)$.

One direction of this correspondence works by Galois descent: Let N be a regular subgroup normalized by $\lambda(G)$. Then G acts on the group algebra E[N] through the Galois action on E and conjugation by $\lambda(G)$ on N, i.e.,

$$g(x\eta) = g(x)(\lambda(g)\eta\lambda(g^{-1})), \ g \in G, \ x \in E, \ \eta \in N.$$

We then define

$$H = (E[N])^G = \{x \in E[N] : g(x) = x, \forall g \in G\}.$$

The action of H on L/K is thus

$$\left(\sum_{\eta\in N}r_{\eta}\eta\right)\cdot x=\sum_{\eta\in N}r_{\eta}\eta^{-1}[1_{G}](x).$$

The fixed ring H is an n-dimensional K-Hopf algebra, n = [L : K], and L/K has a Hopf Galois structure via H.

Moreover,

$$E \otimes_{\mathcal{K}} H \cong E \otimes_{\mathcal{K}} \mathcal{K}[N] \cong E[N],$$

as E-Hopf algebras, that is, H is an E-form of K[N].

Theorem 2.2 can be applied to the case where L/K is Galois with group G (thus, E = L, $G' = 1_G$, G/G' = G).

In this case the Hopf Galois structures on L/K correspond to regular subgroups of Perm(G) normalized by $\lambda(G)$, where $\lambda: G \to Perm(G), \lambda(g)(h) = gh$, is the left regular representation.

Example 2.3. Suppose L/K is a Galois extension, $G = \operatorname{Gal}(L/K)$. Let $\rho : G \to \operatorname{Perm}(G)$ be the right regular representation defined as $\rho(g)(h) = hg^{-1}$ for $g, h \in G$. Then $N = \rho(G)$ is a regular subgroup normalized by $\lambda(G)$, since $\lambda(g)\rho(h)\lambda(g^{-1}) = \rho(h)$ for all $g, h \in G$.

 $N = \rho(G)$ corresponds to a Hopf-Galois structure with K-Hopf algebra

$$H_{\rho} = (L[\rho(G)])^{G} = K[G],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

the usual group ring Hopf algebra with its usual action on L. Consequently, $\rho(G)$ corresponds to the *classical* Hopf Galois structure. **Example 2.4.** Again, suppose L/K is Galois with group G. Let $N = \lambda(G)$.

Then N is a regular subgroup of Perm(G) which is normalized by $\lambda(G)$, and $N = \rho(G)$ if and only if N abelian. The corresponding Hopf algebra is the fixed ring

$$H_{\lambda} = (L[\lambda(G)])^{G}.$$

If G is non-abelian, then $N = \lambda(G)$ corresponds to the *canonical* non-classical Hopf-Galois structure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3. The Case $K = \mathbb{Q}$, $G = D_3$

For the remainder of this talk, we specialize to the case where the base field $K = \mathbb{Q}$, and the Galois group is the dihedral group of order 6,

$$D_3 = \langle \sigma, \tau : \sigma^3 = \tau^2 = \sigma \tau \sigma \tau = 1 \rangle.$$

Let L/\mathbb{Q} be a Galois extension with group D_3 . By Example 2.3, and Example 2.4, we have regular subgroups $\rho(D_3)$, $\lambda(D_3)$ normalized by $\lambda(D_3)$.

These regular subgroups give rise to the classical and canonical non-classical Hopf-Galois structures on L/\mathbb{Q} via the \mathbb{Q} -Hopf algebras $\mathbb{Q}[D_3]$ and H_{λ} , respectively.

The classical Hopf-Galois structure on L/\mathbb{Q} has \mathbb{Q} -Hopf algebra $\mathbb{Q}[D_3] = \{a_{0,0} + a_{0,1}\sigma + a_{0,2}\sigma^2 + a_{1,0}\tau + a_{1,1}\tau\sigma + a_{1,2}\tau\sigma^2 : a_{i,j} \in \mathbb{Q}\}.$

And, due to L. Childs, the canonical non-classical Hopf-Galois structure on L/\mathbb{Q} has \mathbb{Q} -Hopf algebra

$$egin{aligned} \mathcal{H}_{\lambda} &= \{ a_0 + a_1 \sigma + au(a_1) \sigma^2 + b_0 au + \sigma(b_0) au \sigma + \sigma^2(b_0) au \sigma^2 : \ &a_0 \in \mathbb{Q}, a_1 \in L^{\langle \sigma
angle}, b_0 \in L^{\langle au
angle} \} \end{aligned}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

It is of interest to determine how $\mathbb{Q}[D_3]$ and H_{λ} fall into isomorphism classes as algebras and Hopf algebras.

Proposition 3.1. H_{λ} and $\mathbb{Q}[D_3]$ are not isomorphic as \mathbb{Q} -Hopf algebras.

Proof. See [KKTU19, Proposition 4].

The situation is different as algebras.

Theorem 3.2. [C. Greither] $H_{\lambda} \cong \mathbb{Q}[D_3]$ as \mathbb{Q} -algebras.

Proof. This is shown in [KKTU19, Theorem 4]. Note: Greither's theorem holds for any Galois extension L/K, $\mathbb{Q} \subseteq K$, with group G, that is, we always have $H_{\lambda} \cong K[G]$ as K-algebras.

Since \mathbb{Q} has characteristic 0, both H_{λ} and $\mathbb{Q}[D_3]$ are left semisimple and decompose into a product of matrix rings over division rings.

By [CR81, Example (7.39)], $\mathbb{Q}[D_3] \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_2(\mathbb{Q}),$ as \mathbb{Q} -algebras. And so, by Theorem 3.2 $H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_2(\mathbb{Q}),$ (1)

as \mathbb{Q} -algebras.

Let M be the subalgebra of H_{λ} corresponding to the component $Mat_2(\mathbb{Q})$ in the decomposition (1).

We compute a \mathbb{Q} -basis for $M \subseteq H_{\lambda}$.

Let $\alpha \in L$ be so that $L^{\langle \sigma \rangle} = \mathbb{Q}(\alpha)$, $\alpha^2 \in \mathbb{Q}$, and let $a_1 = q_0 + q_1 \alpha$ be a typical element of $\mathbb{Q}(\alpha)$, $q_0, q_1 \in \mathbb{Q}$. Note that $\tau(a_1) = q_0 - q_1 \alpha$.

Let $\beta \in L$ be so that $L^{\langle \tau \rangle} = \mathbb{Q}(\beta)$ with $b_0 = r_0 + r_1\beta + r_2\beta^2$ a typical element of $\mathbb{Q}(\beta)$, $r_0, r_1, r_2 \in \mathbb{Q}$.

Let
$$v = 2\beta - \sigma(\beta) - \sigma^2(\beta)$$
, $w = 2\beta^2 - \sigma(\beta^2) - \sigma^2(\beta^2)$.

Proposition 3.3. A \mathbb{Q} -basis for M is

$$\left\{\frac{2-\sigma-\sigma^2}{3}, \alpha(\sigma-\sigma^2), \frac{v\tau+\sigma(v)\tau\sigma+\sigma^2(v)\tau\sigma^2}{3}, \frac{w\tau+\sigma(w)\tau\sigma+\sigma^2(w)\tau\sigma^2}{3}\right\}.$$

Proof. The element $e_3 = (2 - \sigma - \sigma^2)/3$ is the orthogonal idempotent corresponding to the component $Mat_2(\mathbb{Q})$ in the decomposition (1). By Childs' result, H_{λ} consists of elements of the form

$$h = a_0 + a_1\sigma + \tau(a_1)\sigma^2 + b_0\tau + \sigma(b_0)\tau\sigma + \sigma^2(b_0)\tau\sigma^2,$$

where $a_0 \in \mathbb{Q}$, $a_1 \in \mathbb{Q}(\alpha)$, and $b_0 \in \mathbb{Q}(\beta)$. Thus, the product e_3h is a typical element of M, which can be written as a linear combination of the claimed basis.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since $Mat_2(\mathbb{Q})$ has nilpotent elements, e.g. $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, H_{λ} must have nilpotent elements, necessarily in the subalgebra M.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Here is how we find them.

Let $m \in M \subseteq H_{\lambda}$. By Proposition 3.3, there exists $a, b, c, d \in \mathbb{Q}$ so that

$$m = a(2 - \sigma - \sigma^{2}) + b\alpha(\sigma - \sigma^{2}) + c(v\tau + \sigma(v)\tau\sigma + \sigma^{2}(v)\tau\sigma^{2}) + d(w\tau + \sigma(w)\tau\sigma + \sigma^{2}(w)\tau\sigma^{2}) = a(2 - \sigma - \sigma^{2}) + b\alpha(\sigma - \sigma^{2}) + ((cv + dw)\tau + \sigma(cv + dw)\tau\sigma + \sigma^{2}(cv + dw)\tau\sigma^{2}).$$

Let $\operatorname{Tr}_{L^{\langle \tau \rangle}/\mathbb{Q}} : L^{\langle \tau \rangle} \to \mathbb{Q}$ and $\operatorname{Tr}_{L^{\langle \sigma \tau \rangle}/\mathbb{Q}} : L^{\langle \sigma \tau \rangle} \to \mathbb{Q}$ and denote the trace maps. Let $\operatorname{N}_{L^{\langle \tau \rangle}/\mathbb{Q}} : L^{\langle \tau \rangle} \to \mathbb{Q}$ denote the norm map.

Lemma 3.4. The element *m* is nilpotent of index 2 if and only if the following conditions hold:

Proof. We show directly that $m^2 = 0$ if and only if conditions (i), (ii), and (iii) hold.

4. Application to Binary Quadratic Forms

Let $p(X) = X^3 + qX + r$ be an irreducible cubic over \mathbb{Q} with discriminant $\mathcal{D} = -4q^3 - 27r^2$. Without loss of generality we can assume that $q, r \in \mathbb{Z}$.

Suppose \mathcal{D} is not a square in \mathbb{Q} . Then the splitting field L of p(X) is Galois over \mathbb{Q} with group D_3 .

By [Ro15, Proposition A-5.69], $L^{\langle \sigma \rangle} = \mathbb{Q}(\sqrt{\mathcal{D}})$.

By [Ro15, Theorem A-1.2], the roots of p(X) are

$$s+t$$
, $s\zeta + t\zeta^2$, $s\zeta^2 + t\zeta$

with $s = \sqrt[3]{(-r + \sqrt{R})/2}$, t = -q/(3s), $R = r^2 + (4/27)q^3$, and ζ a primitive 3rd root of unity. Note that st = -q/3 and $s^3 + t^3 = -r$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Galois action on L is defined by

$$\begin{aligned} \sigma(s+t) &= s\zeta + t\zeta^2, \quad \sigma(s\zeta + t\zeta^2) = s\zeta^2 + t\zeta, \quad \sigma(s\zeta^2 + t\zeta) = s + t, \\ \tau(s+t) &= s + t, \quad \tau(s\zeta + t\zeta^2) = s\zeta^2 + t\zeta, \quad \tau(s\zeta^2 + t\zeta) = s\zeta + t\zeta^2. \end{aligned}$$

Put
$$\beta = s + t$$
, $v = 2\beta - \sigma(\beta) - \sigma^2(\beta)$ and $w = 2\beta^2 - \sigma(\beta^2) - \sigma^2(\beta^2)$.

Let H_{λ} be the Q-Hopf algebra of the canonical non-classical Hopf Galois structure on L/\mathbb{Q} .

By Theorem 3.2,

$$H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{2}(\mathbb{Q}).$$

Let *M* be the subalgebra of H_{λ} isomorphic to $Mat_2(\mathbb{Q})$. Let *m* be a nilpotent element of *M*.

By Lemma 3.4(iii), there exist rationals x, y so that

$$\operatorname{Tr}_{L^{\langle \sigma \tau \rangle}/\mathbb{Q}}((xv + yw)\sigma(xv + yw)) = -\mathcal{D}.$$
(2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We claim that the right-hand side of (2) is a binary quadratic form in x, y over \mathbb{Z} .

To prove this we first need a lemma.

Lemma 3.5.

(i)
$$v = 3s + 3t$$
,
(ii) $w = 3s^2 + 3t^2$,
(iii) $\sigma(s^2 + t^2) = s^2\zeta^2 + t^2\zeta$.
(iv) $\sigma(s^2\zeta + t^2\zeta^2) = s^2 + t^2$.

Proposition 3.6. $\operatorname{Tr}_{L^{\langle \sigma\tau\rangle}/\mathbb{Q}}((xv+yw)\sigma(xv+yw)) = 9qx^2 + 27rxy - 3q^2y^2.$

Proof. We have $(xv + yw)\sigma(xv + yw)$

$$= 9x^{2}(s+t)(s\zeta+t\zeta^{2}) + 9xy((s+t)(s^{2}\zeta^{2}+t^{2}\zeta) + (s^{2}+t^{2})(s\zeta+t\zeta^{2})) + 9y^{2}(s^{2}+t^{2})(s^{2}\zeta^{2}+t^{2}\zeta).$$

Now, applying $\mathrm{Tr}_{L^{\langle\sigma\tau\rangle}/\mathbb{Q}}$ to each term above yields

$$\operatorname{Tr}_{L^{\langle \sigma \tau \rangle}/\mathbb{Q}}((xv + yw)\sigma(xv + yw)) = 9qx^2 + 27rxy - 3q^2y^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Now, in view of (2) and Proposition 3.6, the equation

$$E: 9qX^2 + 27rXY - 3q^2Y^2 = -D$$

has a non-trivial solution (x, y) in the rationals (and hence an infinite number of rational solutions). The discriminant of the binary quadratic form is

$$\mathcal{D}' = (27r)^2 - 4(9q)(-3q^2) = -27\mathcal{D}.$$

If $\mathcal{D}' > 0$, then $\mathcal{D} < 0$. Thus if *E* is an hyperbola, then p(X) has one real root and two non-real complex roots. Moreover, if p(X) has three real roots, then *E* is an ellipse.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The nilpotent elements of H_{λ} (up to multiplication by a rational) correspond to rational points on the graph of *E*.

Example 3.7. Let $q(X) = X^3 + 3X + 1$. Then q(X) is irreducible with $\mathcal{D} = -135$, and so its splitting field L/\mathbb{Q} is Galois with group D_3 . The roots of q(X) are

$$s+t, \quad s\zeta + t\zeta^2, \quad s\zeta^2 + t\zeta,$$

where $s = \sqrt[3]{(-1+\sqrt{5})/2}, \ t = \sqrt[3]{(-1-\sqrt{5})/2}.$ In this case,
 $E: \ 27X^2 + 27XY - 27Y^2 - 135 = 0,$

with D' = -27(-135) = 3645, and D = -135. Thus *E* is a hyperbola and $X^3 + 3X + 1$ has exactly one real root.

Let
$$\beta = s + t$$
, $v = 2\beta - \sigma(\beta) - \sigma^2(\beta)$ and $w = 2\beta^2 - \sigma(\beta^2) - \sigma^2(\beta^2)$.

By inspection, (2,1) is a solution to E. Thus

$$m = \sqrt{-135}(\sigma - \sigma^2) + (2\nu + w)\tau + \sigma(2\nu + w)\tau\sigma + \sigma^2(2\nu + w)\tau\sigma^2$$

・ロト・日本・ヨト・ヨー うへの

is a nilpotent element of H_{λ} .

Fig. 1. Graph of hyperbola $27X^2 + 27XY - 27Y^2 - 135 = 0$ given by $X^3 + 3X + 1$. The point (2,1) corresponds to the nilpotent element $m \in H_{\lambda}$.

4. Another Proof of Greither's Theorem

Let L/\mathbb{Q} be Galois with group D_3 and let y be a generator for the subfield $L^{\langle \tau \rangle}$ with minimal polynomial $p(X) = X^3 + qX + r$ and discriminant $\mathcal{D} = -4q^3 - 27r^2$.

In this section we give an alternate proof of Greither's theorem (Theorem 3.2).

Theorem 4.1. (Greither) $H_{\lambda} \cong \mathbb{Q}[D_3]$ as \mathbb{Q} -algebras.

Proof. By the theory of characters,

$$H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_{r}(R),$$

where $1 \le r \le 2$ and *R* is some division ring.

So to establish Greither's result, we show that r = 2 and $R = \mathbb{Q}$, and to do this it suffices to show that H_{λ} contains a non-trivial nilpotent element of index 2. In order prove the existence of such an element, we show that

$$E: 9qX^2 + 27rXY - 3q^2Y^2 = -\mathcal{D} = 4q^3 + 27r^2.$$

has a non-trivial solution in the rationals. Then by Proposition 3.6, there are rationals x, y not both zero with

$$\operatorname{Tr}_{L^{\langle \sigma \tau \rangle}/\mathbb{Q}}((xv + yw)\sigma(xv + yw)) = -\mathcal{D}.$$

Consequently, by Lemma 3.4(iii), H_{λ} contains a non-trivial nilpotent of index 2, and so the decomposition is in fact

$$H_{\lambda} \cong \mathbb{Q} \times \mathbb{Q} \times \operatorname{Mat}_2(\mathbb{Q}).$$

If q = 0, then E is easily solved since it reduces to XY = r. So we assume that $q \neq 0$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

If $q \neq 0$, one checks that X = 2q/3, Y = 3r/q is a non-trivial rational solution to *E*.

References

[Ch00] L. N. Childs, *Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory*, AMS: Mathematical Surveys and Monographs, **80**, 2000.

[CR81] C. W. Curtis and I. Reiner, *Methods of Representation Theory, vol. 1*, Wiley, 1981.

[GP87] C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions, *J. Algebra*, **106**, 1987, 239-258.

[KKTU19] A. Koch, T. Kohl, P. J. Truman, R. Underwood. (2019) The Structure of Hopf Algebras Acting on Dihedral Extensions. In: Feldvoss J., Grimley L., Lewis D., Pavelescu A., Pillen C. (eds) *Advances in Algebra*. SRAC 2017. Springer Proceedings in Mathematics & Statistics, vol 277. Springer, Cham.

[Ro15] J. Rotman, *Advanced Modern Algebra*, Third Ed., Part I, Amer. Math. Soc., 2015.

[Se77] J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.